您好,欢迎光临上海图书公司! 登录
低碳废水生物脱氮理论与技术(普通高等教育十四五规划教材)(英文版)
ISBN:9787511477491
作者:编者:陈重军//李大鹏|责编:韩勇
定价:¥58.0
出版社:中国石化
版次:第1版
印次:第1次印刷
开本:4 平装
页数:304页
商品详情
目录

Chapter 1  Overview
  1.1  The nitrogen cycle in nature
  1.2  Nitrogen contamination risk
    1.2.1  Global nitrogen pollution situation
    1.2.2  Nitrogen pollution in China
  1.3  Nitrogen pollution control
    1.3.1  Increasingly higher emission standards
    1.3.2  Improvement of nitrogen pollution in natural water bodies in China
  1.4  Low carbon source wastewater treatment issue
    1.4.1  Typical low-carbon source wastewater
    1.4.2  The challenges of conventional nitrogen removal
    1.4.3  The challenge of carbon neutrality
  1.5  New biological nitrogen removal process
    1.5.1  Shortcut nitrification-denitrification systems
    1.5.2  Simultaneous nitrification-denitrification systems
    1.5.3  Anaerobic ammonium oxidation (Anammox)
    1.5.4  Sulfur-autotrophic denitrification
    1.5.5  Ferric ammonium oxidation: Feammox
    1.5.6  Anaerobic oxidation of methane (AOM)
    1.5.7  Hydrogen autotrophic denitrification
  Questions
  References
Chapter 2  Partial nitrification and denitrification
  2.1  Introduction
  2.2  Advantages of partial nitrification and denitrification
  2.3  Microorganism involved in nitrification
    2.3.1  Morphologic and phylogenetic diversity of AOB
    2.3.2  Morphologic and phylogenetic diversity of NOB
  2.4  The main influencing parameters of partial nitrification
    2.4.1  pH, free ammonia (FA) and free nitrous acid (FNA)
    2.4.2  Temperature
    2.4.3  DO concentration
    2.4.4  Sludge retention time
    2.4.5  Toxic substances
  2.5  The main challenges for partial nitrification
  2.6  Application of partial nitrification and denitrification
  Questions
  References
Chapter 3  Simultaneous nitrification and denitrification
  3.1  Introduction
  3.2  The mechanism and advantages of simultaneous nitrification and denitrification
    3.2.1  The mechanism of SND
    3.2.2  The advantages of SND
  3.3  Microorganism involved in SND
    3.3.1  Nitrifying bacteria within the biofilm
    3.3.2  Denitrifying bacteria in the biofilm
    3.3.3  Bacteria capable of heterotrophic nitrification and aerobic denitrification
  3.4  The main factors affecting SND
    3.4.1  DO
    3.4.2  pH
    3.4.3  C/N
    3.4.4  Sludge flocs
  3.5  Applications of SND
    3.5.1  Moving bed biofilm reactors
    3.5.2  Hybrid moving bed biofilm reactor-membrane bioreactor systems
    3.5.3  Aerobic granular sludge systems
  Questions
  References
Chapter 4  Nitrite-based anaerobic ammonia oxidation (Anammox)
  4.1  Discovery of nitrite-based Anammox
  4.2  Nitrite-based Anammox stoichiometric ratio
  4.3  Nitrite-based Anammox microorganisms and central metabolism
    4.3.1  Diversity of functional bacteria for nitrite-based Anammox
    4.3.2  Central metabolic mechanism of nitrite-based Anammox
  4.4  Factors affecting Anammox of nitrite type
    4.4.1  Reactor impact
    4.4.2  Influence of environmental factors
    4.4.3  Substrate effects
  4.5  Nitrite type Anammox main process
    4.5.1  SHARON-ANAMMOX
    4.5.2  CANON
    4.5.3  Oxygen-Limited Autotrophic Nitrification/Denitrification (OLAND)
    4.5.4  Simultaneous partial Nitrification, Anammox and Denitrification (SNAD)
    4.5.5  Partial Denitrification - Anammox (PD/A)
    4.5.6  Denitrifying Anaerobic Methane Oxidation/Anammox (DAMO/A)
  Questions
  References
Chapter 5  Matching nitrosation for Anammox
  5.1  Matched nitrosation reaction
  5.2  Process of realization of matched nitrosation
    5.2.1  Selection of reactor
    5.2.2  Alkalinity
    5.2.3  pH
    5.2.4  DO content
    5.2.5  HRT
  5.3  Low temperature for matched nitrosation
  5.4  Low substrate concentration for matched nitrosation
  5.5  Real-time reactor control
  5.6  Microbial populations in matched nitrosation systems
  Questions
  References
Chapter 6  Start-up of Anammox
  6.1  The purpose and significance of quick startup
  6.2  Initiation factor control
    6.2.1  Selection of reactor
    6.2.2  Selection of inoculated sludge
    6.2.3  Selection of carrier
    6.2.4  Start-up load
    6.2.5  Low temperature start-up control
  6.3  Start-up process characteristics
    6.3.1  Start-up stage
    6.3.2  Stoichiometry ratio
  6.4  Microbial enrichment status
    6.4.1  Trends and extent of microbial enrichment
    6.4.2  Enrichment population categories
  6.5  Conclusions and prospects
  Questions
  References
Chapter 7  Promoters and inhibitors of Anammox
  7.1  Exogenous additives for improving the Anammox process
    7.1.1  Metals addition
    7.1.2  Organic matter addition
    7.1.3  Inorganic matter addition
    7.1.4  Intermediates addition
    7.1.5  N-acyl-homoserine lactones addition
  7.2  Exogenous substances for inhibiting the Anammox process
    7.2.1  Different inhibitory factors of Anammox process
    7.2.2  Strategies to control the inhibition
  Questions
  References
Chapter 8  Coupling of Anammox and denitrification
  8.1  Reaction mechanism of simultaneous Anammox and denitrification process
    8.1.1  Stoichiometry in simultaneous Anammox and denitrification
    8.1.2  Microbiology in simultaneous Anammox and denitrification
  8.2  Research on the coupling of Anammox and denitrification
    8.2.1  The coupling reaction of Anammox and denitrification
    8.2.2  Start-up of coupled Anammox and denitrification reactor
    8.2.3  Factors influencing the coupling of Anammox and denitrification
  8.3  Microbial community of the simultaneous Anammox and denitrification process
  8.4  Emerging extensions of simultaneous Anammox-denitrification process
    8.4.1  SAND
    8.4.2  ADSF
    8.4.3  SDA
  Questions
  References
Chapter 9  Anammox Granular sludge
  9.1  Formation mechanism of Anammox granular sludge
  9.2  Factors influencing the development of Anammox granules
    9.2.1  Seed sludge
    9.2.2  Substrate concentration
    9.2.3  Hydraulic Retention Time (HRT) and Sludge Retention Time (SRT)
    9.2.4  Temperature and pH
    9.2.5  Hydraulic shear force and stirring speed
    9.2.6  Presence of inorganic ions
    9.2.7  Extracellular polymeric substances (EPS)
    9.2.8  Influence of nanoparticles present in wastewater
  9.3  Structure and microecology of Anammox granular sludge
    9.3.1  Properties of the Anammox granular sludge
    9.3.2  Microbial ecology of granular sludge
  9.4  EPS of Anammox granular sludge
    9.4.1  Compositional characteristics of EPS
    9.4.2  Influencing factors of EPS
  9.5  Application of Anammox granular sludge
  9.6  Main factors affecting EPS secretion and sludge granulation
    9.6.1  Organic concentration
    9.6.2  Nitrogen concentration and loading in the reaction system
    9.6.3  External mediator
    9.6.4  Other influencing factors
  9.7  Limitations of Anammox granulation
    9.7.1  Flotation
    9.7.2  Storage stability of Anammox granules
    9.7.3  Susceptibility to heavy metals
  9.8  Conclusions
  Questions
  References
Chapter 10  Application of Anammox
  10.1  Urban domestic sewage
    10.1.1  Realization of a compatible Anammox process
    10.1.2  Influencing factor
    10.1.3  Treatment process
    10.1.4  Engineering practice
  10.2  Industrial wastewater
    10.2.1  Landfill leachate
    10.2.2  Monosodium glutamate wastewater
    10.2.3  Rare earth wastewater
    10.2.4  Pharmaceutical wastewater
  10.3  Agricultural wastewater
    10.3.1  Swine wastewater
    10.3.2  Dairy wastewater
    10.3.3  Aquatic aquaculture wastewater
  Questions
  References
Chapter 11  Sulfate-reducing ammonium oxidation (sulfammox)
  11.1  Introduction
  11.2  Anthology of sulfammox studies
  11.3  Mechanism of sulfammox
    11.3.1  The presence of organic carbon sources in the influent
    11.3.2  No organic carbon sources in the influent
  11.4  Characteristics of microbes in sulfammox
  11.5  Environmental factors and operational conditions affecting sulfammox
    11.5.1  Process medium and feeding options
    11.5.2  NH4+ / SO42- ratio
    11.5.3  COD addition
    11.5.4  Temperature and pH
    11.5.5  Spontaneity and oxidation-reduction potential
    11.5.6  Other factors
  11.6  Applicable reactors and reported efficiencies
  11.7  Conclusions
  Questions
  References
Chapter 12  Fe (Ⅲ) reduction coupled to anaerobic ammonium oxidation (Feammox)
  12.1  Introduction
  12.2  A collection of existing investigations regarding the Feammox process
    12.2.1  Anthology of Feammox studies
    12.2.2  Unveiling of Feammox in the environment and rate measurements
    12.2.3  Feammox microbial functions
  12.3  The artificial and natural factors that affect the growth of Feammox microorganisms
    12.3.1  The ferric iron
    12.3.2  Soil pH and redox potential
    12.3.3  Dissolved oxygen
    12.3.4  Temperature
    12.3.5  Nitrite and nitrate
    12.3.6  Carbon sources and electron shuttles
    12.3.7  In situ soil nutrient characteristics
  12.4  Prospective: use of Feammox for practical large-scale wastewater treatment
  12.5  Conclusions
  Questions
  References
Chapter 13  Anaerobic Methane Oxidation (AOM)
  13.1  Discovery and classification of anaerobic methane oxidation
    13.1.1  Discovery of anaerobic methane oxidation
    13.1.2  Classification of anaerobic methane oxidation processes
    13.1.3  Functional microorganisms of anaerobic methane oxidation
  13.2  Microbial metabolism of anaerobic methane oxidation
    13.2.1  Sulfate-dependent Anaerobic Methane Oxidation (SAMO)
    13.2.2  Denitrifying Anaerobic Methane Oxidation (DAMO)
    13.2.3  Metal-dependent Anaerobic Methane Oxidation (metal-AOM)
    13.2.4  Anaerobic methane oxidation with other new electron acceptors
  13.3  Physiological characteristics and ecological distribution of the anaerobic methanotrophic microorganisms
    13.3.1  Anaerobic methanotrophic archaea
    13.3.2  Anaerobic methanotrophic bacteria
  13.4  Enrichment of anaerobic methane-oxidizing microorganisms
  13.5  Application potential of anaerobic methane oxidation
  Questions
  References
Chapter 14  Hydrogen-based denitrification
  14.1  Introduction
  14.2  Fundamental of H2-based denitrification
  14.3  Microorganism involved in H2-based MBfRs
  14.4  The key control factors
    14.4.1  Membrane materials
    14.4.2  Reactor types
    14.4.3  Biofilm management
    14.4.4  H2 pressure
    14.4.5  Nitrate loading
    14.4.6  pH
  14.5  Applications of H2-based MBfRs
  Questions
  References

最近浏览过的书籍