您好,欢迎光临上海图书公司! 登录
多约束最优制导律设计与分析(英文版)
ISBN:9787576331752
作者:作者:何绍溟|责编:徐宁
定价:¥69.0
出版社:北京理工大学
版次:第1版
印次:第1次印刷
开本:4 平装
页数:225页
商品详情
目录

Chapter 1  Introduction of Optimal Guidance
  1.1  Background and Motivation
  1.2  Optimal Guidance Problem
    Example: Energy Minimization
  1.3  Aim and Organization
  References
Chapter 2  Optimal Error Dynamics in Missile Guidance
  2.1  Preliminaries and Motivations
    2.1.1  Missile-Target Relative Kinematics
    2.1.2  Motivations
    2.1.3  Preliminaries
  2.2  Optimal Error Dynamics
    2.2.1  Derivation of the Proposed Optimal Error Dynamics
    2.2.2  Discussion of the Proposed Optimal Error Dynamics
    2.2.3  Potential Significance of the Proposed Optimal Error Dynamics
    2.2.4  General Approach for Guidance Law Design
  2.3  Illustrative Examples
    2.3.1  Homing Guidance
    2.3.2  Impact Time Control
    2.3.3  Impact Angle Control
    2.3.4  Impact Angle and Impact Time Control
  2.4  Simulation Results
    2.4.1  Homing Guidance
    2.4.2  Alleviating Transition Effect
    2.4.3  Shaping Aerodynamic Maneuverability
    2.4.4  Impact Time Control
    2.4.5  Impact Angle Control
    2.4.6  Impact Time and Angle Control
  2.5  Summary
  References
Chapter 3  Optimal Trajectory Shaping Guidance Law with Seeker's Field-of-View Constraint
  3.1  Trajectory Shaping for Impact Time Control with Seeker's FoV Constraint
    3.1.1  Problem Formulation
    3.1.2  Impact Time Guidance Law Design
  3.2  Analysis of Proposed Guidance Law
    3.2.1  Optimality and Convergence of Impact Time Error
    3.2.2  Velocity Lead Angle Analysis
    3.2.3  Guidance Command Analysis
    3.2.4  Selection of th (x)
  3.3  Numerical Simulations
    3.3.1  Performance with Different Impact Times
    3.3.2  Performance with Different Velocity Lead Angle Constraints
    3.3.3  Comparison with Other Guidance Laws
  3.4  Trajectory Shaping for Impact Angle Control with Seeker's FoV Constraint
    3.4.1  Problem Formulation
    3.4.2  Impact Angle Guidance Law Design
  3.5  Analysis of Proposed Guidance Law
  3.6  Numerical Simulations
    3.6.1  Performance with Different Impact Angles
    3.6.2  Performance with Different Velocity Lead Angle Constraints
    3.6.3  Comparison with Other Guidance Laws
  3.7  Summary
  References
Chapter 4  Nonlinear Optimal Trajectory Shaping Guidance for Impact Angle Control
  4.1  Backgrounds and Preliminaries
    4.1.1  Engagement Geometry
    4.1.2  Reference Frame and Relative Engagement Geometry
    4.1.3  Preliminary Concepts and Problem Formulation
  4.2  Derivation of the Nonlinear Optimal Guidance Law
    4.2.1  Optimal Guidance Law for Perfect Interception
    4.2.2  Optimal Guidance Law with Relative Flight Path Angle Constraint
  4.3  Analysis of Proposed Guidance Law
    4.3.1  Particular Case: Stationary Target Interception
    4.3.2  Convergence of Velocity Lead Angle and Impact Angle Error
    4.3.3  Characteristics of Guidance Command
    4.3.4  Capture Condition
  4.4  Engagement Simulation
    4.4.1  Scenario 1
    4.4.2  Scenario 2
    4.4.3  Scenario 3
  4.5  Summary
  References
Chapter 5  Nonlinear Optimal Trajectory Shaping Guidance for Impact Vector Control
  5.1  Preliminaries and Problem Formulation
    5.1.1  Engagement Geometry
    5.1.2  Relative Engagement Geometry in Reference Frame
    5.1.3  Problem Formulation
  5.2  Derivation of Nonlinear Optimal Guidance Law
    5.2.1  Optimal Guidance Law for Perfect Interception
    5.2.2  Optimal Guidance Law with Terminal Flight Direction Constraint
  5.3  Analysis of Proposed Guidance Law
    5.3.1  Partieular Case:~" =0
    5.3.2  Convergence Analysis
    5.3.3  Characteristics of Guidance Command
  5.4  Engagement Simulation
    5.4.1  Scenario 1
    5.4.2  Scenario 2
    5.4.3  Scenario 3
  5.5  Summary
  Appendix A.Derivation of Eq.(5.63)
  References
Chapter 6  Optimal Trajectory Shaping Guidance with Observability Enhancement
  6.1  Observability Under Proportional Navigation Guidance
    6.1.1  Geometric Metric for Observability Analysis
    6.1.2  Relationship Between the Proposed Observability Metric and Fisher Information Matrix
    6.1.3  Target Observability Under Proportional Navigation Guidance
  6.2  Optimal Guidance Law for Target Observability Enhancement
    6.2.1  Problem Formulation
    6.2.2  Optimal Guidance Law Design
  6.3  Analysis of Proposed Optimal Guidance Law
    6.3.1  Behavior of Navigation Gain
    6.3.2  Closed-Form Solution of Proposed Guidance Law
    6.3.3  Behavior of Velocity Lead Angle
  6.4  Simulation Results
    6.4.1  Characteristics of the Proposed Guidance Law
    6.4.2  Comparison with Other Guidance Laws
    6.4.3  Filter-Embedded Closed-Loop Simulation
  6.5  Summary
  Appendix A  Derivation of Guidance Command (6.55)
  References
Chapter 7  Optimal Proportional-Integral Guidance Law
  7.1  Problem Formulation Preliminary
  7.2  Derivation of the Proposed Optimal Guidance Law
  7.3  Analysis of Proposed Optimal Guidance Law
    7.3.1  Behavior of the ZEM Dynamics
    7.3.2  Closed-Form Solution of the Proposed Guidance Law
    7.3.3  Sensitivity to Unknown Target Acceleration
  7.4  Simulation Results
    7.4.1  Characteristics of the Proposed Guidance Law
    7.4.2  Reduced Sensitivity to Unknown Target Maneuvers
    7.4.3  Comparison with Previous PI Guidance Laws
  7.5  Summary
  Appendix A  Derivation of Guidance Command (7.55)
  References
Chapter 8  Gravity-Turn-Assisted Optimal Guidance Law
  8.1  Problem Formulation
  8.2  Collision Triangle Derivation
  8.3  Optimal Guidance Law Design and Analysis
    8.3.1  Instantaneous Zero-Effort-Miss
    8.3.2  Optimal Guidance Law Design
    8.3.3  Relationships with Previous Guidance Laws
  8.4  Simulation Results
    8.4.1  Characteristics of the Proposed Guidance Law
    8.4.2  Comparison with Other Guidance Laws
  8.5  Extension to the Intercept-Angle-Control Problem
  8.6  Analysis of the Proposed Guidance Law
    8.6.1  Convergence of Instantaneous ZEM and Intercept Angle Error
    8.6.2  Behavior of Navigation Gain
    8.6.3  Relationship Between the Proposed Guidance Law and Previous Guidance Laws
  8.7  Simulation Results
    8.7.1  Characteristics of the Proposed Guidance Law
    8.7.2  Comparison with Other Guidance Laws
  8.8  Summary
  Appendix A  Closed-Form Solution of Eqs.(8.16)-(8.18)
  References
Chapter 9  Optimal Constrained Guidance for Velocity Maximization
  9.1  Backgrounds and Preliminaries
    9.1.1  Nonlinear Mathematical Model
    9.1.2  Optimization Problem
    9.1.3  Main Concept of the Proposed Approach
  9.2  Near-Optimal Midcourse Guidance
    9.2.1  Derivation of Guidance Law with Intermediate and Terminal Constraints
    9.2.2  Algorithm for Waypoint Determination
    9.2.3  Summary of NOMG
  9.3  Simulation Results
    9.3.1  Performance of the Proposed NOMG
    9.3.2  Convergence of Terminal Velocity
  9.4  Summary
  References
Chapter 10  Optimal Encirclement Guidance
  10.1  Backgrounds and Preliminaries
    10.1.1  Engagement Geometry in Inertial Frame
    10.1.2  Relative Engagement Geometry in Reference Frame
  10.2  Derivation of Optimal Encirclement Guidance Law
    10.2.1  Optimal Guidance Law for Interception with Predicable Final LoS Angle
    10.2.2  Optimal Bias Term Design for Coordinating Relative LoS Angle
  10.3  Analysis of Two-on-One Scenario
    10.3.1  Guidance Command of Two-on-One Scenario
    10.3.2  Convergence of Predicted Final LoS Angle Difference Error
    10.3.3  Convergence of Relative Lead Angle
    10.3.4  Characteristics of Guidance Command
  10.4  Numerical Simulation
    10.4.1  Comparison with Existing Cooperative Guidance Law
    10.4.2  Characteristics of the Proposed Algorithm with Various Guidance Gains
    10.4.3  Robustness of the Proposed Guidance Law
  10.5  Summary
Referenees

最近浏览过的书籍